INFORMS Computing Society: Panel Discussion on Education

- Jill Hardin, Chair, Virginia Commonwealth University, jrhardin@vcu.edu
- Kevin Furman, Exxon-Mobil, kevin.c.furman@exxonmobil.com
- Allen holder, Trinity University, aholder@trinity.edu
- David Rader, Rose-Hulman Insitute of Technology, David.Rader@rose-hulman.edu
- Cesar Rego, University of Mississippi, crego@mit.edu
ICS Panel Discussion on Education

Our Charge

- We were asked to outline appropriate curricula for undergraduate students planning to pursue work at the OR/CS interface.
- We determined that the best approach is to outline a list of skills, rather than a list of courses.
 - Tier One: skills deemed essential for future success at the OR/CS interface
 - Tier Two: skills deemed important for future success, but not essential
 - Tier Three: skills deemed helpful in work at the OR/CS interface, but not necessary for success
- Note: We are not making curricular recommendations for individual programs/departments.

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego
Tier 1 - Mathematics Competencies

<table>
<thead>
<tr>
<th>Calculus</th>
<th>Linear Algebra</th>
<th>Discrete Math</th>
<th>Prob. & Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentiation</td>
<td>Linear Systems - solving,</td>
<td>Set Theory</td>
<td>Basic Prob.</td>
</tr>
<tr>
<td>Integration</td>
<td>independence,</td>
<td>Logical</td>
<td>Random Variables</td>
</tr>
<tr>
<td>Sequences/Series</td>
<td>nullspace, ...</td>
<td>Graph Theory</td>
<td>Sampling Dist.</td>
</tr>
<tr>
<td>Multivariate</td>
<td></td>
<td>Functions</td>
<td>Hypothesis Testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relations</td>
<td>Confidence Intervals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linear Regression</td>
</tr>
</tbody>
</table>
ICS Panel Discussion on Education

Tier 1 - Operations Research Modeling

- Ability to create a mathematical model describing a particular situation or application
- Ability to separate model from data
- Know methods and software available to solve models
- Ability to interpret, analyze, and communicate model solutions

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego
Tier 1 - Continued

- **Technical Writing and Presentation**
 - Ability to organize and support analysis and convincing arguments (e.g. mathematical proofs, statistical analysis)

- **Basic Computing Competencies**
 - Familiarity with Contemporary Operating Systems (e.g. Windows, Unix, etc.)
 - Experience using general scientific software (e.g. Matlab, Maple, SPSS, SAS, etc.)
 - Experience using spreadsheet and other Office-type packages

- **First-year Programming Competencies**
 - Fluency in a compiled computer programming language (e.g. C, C++, Java)
 - Familiarity with scripting languages (e.g. Python, VBA, optimization modeling languages)
 - Familiarity with common data structures (e.g. linked lists, stacks, queues, heaps, trees)
 - Ability to analyze run-time of basic algorithms

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego
Tier 1 - Awarenesses

- Numerical Analysis
 - Difference between computed and analytical solutions
 - Awareness of error analysis
 - Round-off error
 - Errors in approximation techniques

- Operations Research Modeling
 - Familiarity with various model types and their applications
 - Mathematical programming models
 - Simulation models
 - Analytical probability models
 - Ability to choose appropriate model type for a given application (e.g. understand the difference between capabilities of simulation and mathematical programming).
 - Determine whether exact or heuristic methods are most appropriate in solving a model
ICS Panel Discussion on Education

Tiers 2 & 3 - Mathematical Competencies

- Differential equations
 - ODEs & PDEs
 - solution methods

- Advanced/Numerical Linear Algebra
 - conditioning and stability
 - SVD
 - QR factorization
 - Cholesky factorization

- Numerical analysis / scientific computing
 - floating point calculations
 - numerical integration
 - numerical solution of differential equations

- Real analysis
 - More advanced graph theory
 - Knowledge of mathematical proof writing techniques

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego
ICS Panel Discussion on Education

Tiers 2 & 3 - OR Theory, Modeling & Algorithms

- Understand the differences between exact methods and heuristics
- Understand the differences between feasibility, local optimality and global optimality
- Basic ability in formulating models (mathematical programming, simulation, probabilistic, etc.)
- Some experience in designing solution methods for models
- Linear programming
 - duality, simplex algorithm
- Familiarity with various algorithm types and corresponding model-types for application
 - branch-and-bound / enumeration / tree search
 - gradient-based methods (for nonlinear)
 - dynamic programming
 - stochastic optimization methods
 - different types of heuristics
- Some exposure to IE topics such as supply chain management, scheduling, logistics, production, controls, etc.

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego
ICS Panel Discussion on Education

Tiers 2 & 3 - Continued

- Computing Competencies:
 - Proficiency in using both Windows and UNIX/Linux operation systems
 - Experience w/ a mathematical programming language (GAMS, AMPL, AIMMS, etc.)

- Programming Competencies:
 - Fluency in object-oriented computer programming
 - Compiling code in different environments / operating systems
 - Scripting language experience (Perl, Python, etc.)
 - Basic conceptual knowledge of parallel computing
 - Exposure to software design principles
 - More advanced competency in algorithmic analysis & computational complexity
 - Big-O notation
 - algorithm design
 - algorithmic analysis

Jill Hardin, Chair
Kevin Furman, Allen Holder, David Rader, Cesar Rego